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Finite Element Output Bounds for Hyperbolic

L. Machiels*

Problems

Abstract
We propose a Neumann-subproblem a posteriori finite element error bound technique for linear stationary scalar

advection problems. The method is similar in many respects to the previv_s output bound technique developed for
elliptic problems. In the new approach, however, the primal residual is enhanced with a streamline diffusion term.
We first formulate the bound algorithm, with particular emphasis on the proof of the bounding properties; then,
we provide numerical results for an illustrative example.
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1 Introduction

In a pioneering contribution [11], Paraschivoiu and Patera propose a new finite element error control strategy for linear
coercive elliptic problems; a quadratic error equality ("energy equality") [14] and a duality argument are invoked 
compute inexpensive lower and upper bounds for engineering quantities (outputs) of interest. The method is 
implicit Aubin-Nitsche construction: first, inexpensive coarse mesh solutions of the original -- primal -- problem and
an associated -- dual -- problem are computed; then, the error estimators are obtained by solving local Neumann
subproblems on a conservative fine mesh. These subproblems are symmetric, positive (semi-) definite, and completely
decoupled. Also, the new procedure does not involve unknown constant or function, and the bounds directly measure
the error for the output of interest. Therefore, computational efficiency is preserved, and numerical uncertainty is
considerably reduced.

The numerical analysis of the method for linear coercive elliptic problems is presented in [9]; output bounds can
also be obtained for noncoercive semi-linear elliptic equations [13, 10] -- including the Navier-Stokes equations [7] --
and time dependent parabolic problems [6]. Finally, the bound approach is related to previous contributions in finite
element a posteriori error estimation [5, 2, 1, 3].

This paper describes an output bound algorithm for linear advection problems; an earlier attempt [8] failed to
yield optimal convergence of the bounds gap. In the new method, the primal residual is enhanced with a streamline
diffusion term in the local subproblems, while the dual residual remains unchanged. Optimality is achieved thanks
to this un-symmetric treatment of the primal and the dual residuals. The extension of the method to more general
Friedrichs systems and non-linear equations is the subject of an ongoing research.

2 Problem Statement

Let f~ be an open polygonal domain in Rd; we consider the stationary scalar linear advection equation

(1) ~ " Vu + au = f, in Ft,
(2) Uir_ = 0,
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where ¢1E (C~(~))d, a > 0, f E L2(~2), and

r_ : {x E 0a INx)" n(x) < 

is the inflow boundary (n denotes the outer normal vector). We also assume that [3(x) n(x) ¢ 0 almost everywhere
1on Of~, and that 3~ > 0 such that (T - 7V .fl > ~. We define the Hilbert space

V = {v E L2(f~) I ¯ VuE L2(a)},

equipped with the norm

Iivliv = (f v2 --l- £([3. vv)2 -l- Ll21[3.nlv2) 

A strong solution of the above advection problem is a function u E V satisfying (1) and (2). Note that a function 
V can be discontinuous across a characteristic surface.

We consider the following output

s = ~ £u + L+gu(fl’n),

where F+ ---- 0f~ \r_, 6 E L2(f~), and g E L2(F+). We also define a dual problem: find %b E V such 

(3) -[3-V%b+(a-V-fl)¢ = -6,

(4) %bw+ = -g;

the importance of this problem will appear shortly.
Let 7-H be a quasi-uniform finite element triangulation of f~; here H denotes the diameter of the mesh. We define

the finite element space,
VH = {v E C(-~) IvlT,~ E Pt(TH), VTH E 

where PI(TH) denotes the space of linear polynomials defined on TH. We use the streamline diffusion method [4] to
write the following approximate problem: find (UH, SH) E VH X such that

(5) (~. rZUH + (TUH, V + Hfl. Vv) - (UH, v)r_

8H

where (., .) denotes the L2(~) inner product 

= (f,v+H R.Vv), VEVH,
= (e, uH) + (g, u.)r÷,

(v,~)r = fr_ v~([3 ̄ 

The approximate dual problem reads: find the adjoint CH E VH such that

(-/9-VCH + ((T -- V-¢1)¢H, v -- H[3. Vv) + (¢H, = --( 6,v -- H fl . Vv) - (g, v)

If we define the "improved" approximate output

8H -~ 8H "Jc H(f - [3. VUH - (Tug, [3. V~)H),

we can show the following Aubin-Nitsche estimate for the error in the output

- ~. = /o ~. v,(~ - ~.) -./o((T- v. ~),(~ - <,, (~- ~.)>~+- ms - ~-w. - ~.,[3.v¢.)8

= - L ,~-,~(u_ ~,,)_ _fo ~+(,< _ ,,,_,)+ (,,,~_ u.>r_ - .(s- ~. ,~u. _ <,~., ~. ,~+.)
= -_£(, - ,,<)n ̄ w - i<> (* - */’)~ + (* -’b"’ e),,_
< c(11¢ - ¢.11o + I¢ - ¢.l)llellv,
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where we have used the definitions of s, SH, and ~H, and equations (3) and (4) in the first line; the second lifie 
obtained by application of the Green formula (which holds in V); the third line follows from (5) and the definition
e = u - UH; finally, in the last line ]1’ ][0 denote the L2(~t) norm and

For a smooth solution, and for H sufficiently small, one can prove [4] that

lie - CHll0 + I¢ - CHI --< CH3/2 and Ileilv < CH;

therefore, under these assumptions, we expect Is - ~HI <-- CH5/2; by contrast, if SH is used instead of ~H, we can only
ensure Is -- SIll <_ CH~.

3 Output Bounds

3.1 Preliminaries

We first introduce the broken spaces

=

We then define the hybrid flux space

{v c L2(~)I~" V(vl~.) L2(TH),VT. ~ T.),
{v E V I vIT. E P1 (TH), VTH E TH}.

z~ = {v c L2(r(T.)) I vl~ c Pl(9’),V9’ E F(7"H))},

where F(’FH) denotes the set of interior edges 9’ C ~ of the triangulation TH. We also introduce the form b : V x ZH --~ R

b(~,~) = /[ ~]~(~. ~)
-~er(T.)s.y

and [v]~ = Vl~+ - Vl.Y- denotes the jump in v over the (arbitrarily oriente:l) edge 9". Finally, we define the local
generalized residuals for the primal and the dual problems

~2~Pr
IT.v. (~; ~) = (f-f~.Vu.-au.)(v+~.xTv)+(u.,v)r_,

du .

fTH
TOT. (v, c) = (-~ + f~. re. - (a - V. f~)¢.)(v - cf~- Vv) + (-9 - ¢-, 

and we write T¢pr : V x R ~ R, T~Pr(v; (z) ETHETH pr̄ du .
~Tn (V, £) and 7¢du : V x R ~ R, Tid~(v; E) = ~TnCT-, T~TI~ (V, £)

3.2 Bound Algorithm

The bound algorithm proceeds in five steps.

1. Compute (UH, SH) E V~ x solution of theprimal prob lem:

(f~. run + ~un,v + Hf~- Vv) - (un, v)r_ = (Lv + ~f~. Vv), v 
s. = (e,u.) + 0,un)r+.

2. Compute the adjoint CH E VH solution of the dual problem:

(-~-V~bH + (a -- V-f3)¢H,, -- H/3. Vv) + (¢H,v)r+ = --(g,, -- Hf3-Vv) - (g, 

3. Compute the hybrid fluxes, zvr E ZH and zdu E ZH, such that

b(v, zW) = nw(v;H), Vv e 
b(v, d~) =TCdU(v; H) , Vv E f /H
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4. Compute the reconstructed errors ~pr E 17 and ~du E 17 such that

(6) 2~(/3. wp’,/3. Vv) + 2~(~’, v) = ~p’(v; ~) - :’),
(7) 2a(/3-v~du,/3¯ VV) + 2~/(~du,v) ~au(v;O) -- b(v, zau

4

where c~ > 0 and ~ > 0 are chosen such that

(2~ 1)

Maa
with M = max(V -/3(x)),(8) c~ < rain ~-~a’ ’ ~ < ~ - ---2---’

xe~

if 3x E ~ such that ~7./3(x) > 0; if V- fl(x) <_ for al l x E ~ then 0 < a < 1/a and 7/< a suffice.

5. Compute the bound
~ = ~. - 2~(~. w%/3. ~") -2~(e~", ~d,) + A~,

where the (half) bounds gap is given 

~ = 2{a(/3 ̄  w~L/3, ~) +~(~’, ~’)}~/2{a(/3 ¯ d~, ~. w~) + ~(~,~)}~/

We make the four following remarks. First, thanks to the equilibrium T~Pr(v; H) = 0, Vv E VH, and T~du(’o; H) 
0, Vv E VH, the hybrid fluxes in Step 3 can be (efficiently) computed using an equilibration procedure [5, 12]. Second,
the solvability of the subproblems (6) and (7) is ensured by the L2(~) stabilization term in the left-hand-side.
The equilibration of the hybrid fluxes guarantees that the means of ~pr and ~du are zero since lit " E VH, and
7-~Pr(I[TH ; e) --b(llT~, Zpr) = O, Yc E R (a similar argument applies for the dual subproblems) -- note that a preliminary
analysis suggests that this property is in fact not required and the hybrid fluxes can be set equal to zero. Third, in
actual practice, the local subproblems are solved on a conservative decoupled fine mesh. Fourth, the cost-effectiveness
follows from the decoupled nature of (6) and (7), their symmetry, and positive definiteness.

3.3 Bounding Properties

We prove here that the estimators S~H of the preceding section are in fact bounds for s. We first define

{~(/3. w%/3. ~) +~(~, ~,)~1/~
: ~(/3- ~,~. w~O +~(~’, ~’ ) J ’

and ~: = ~pr :F £du[~. We then write

0 < ~{~(~- V(e - ~),~. V(e - ~)) + ~(e - ~)}
(9) = a~(/3 ̄  Ve,/3- ~Te) + a~(e, e) anP’(e; v~) 4-~du(e; 0) +aa(~.V~±,/3. V~~=) + a~l(+,~:),

where we have used the definition of ~+, and (6) and (7). We now expand

n~’(~; ~) /o(f - ~. W. - o~.)(e +,~- re) + (~., 

= ./o(/3. Ve + ae)(e + c~/3. Ve) - (e,e)r_

-- + f." {-- +/.+,,--,.’ Z_,,--,.’

In the above expression, the first line is the definition of T~Pr(e; ~); in the second line, we use the definition of e and
equations (1) and (2); the third line is simply a rearrangement of the terms; the Green formula yields the fourth line;
the last lines follow from (8) which implies that a - (V ¯/3) ~ > ~ > 0 as <1.

2 ~
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We turn now to the dual residual,

T~d~(e;0) = --/nee--/r+ge(~.n)+/(f3.V~H--(a--V-~)¢H)e--(l~R,e)r+

+ H./o(f - . Vuu - a.u) " YOu

where we have invoked the definition of the dual residual in the first equality and the Green formula in the second
equality; the third equality follows directly from the definition of e and (1) and (2); the fourth equality is simply
obtained by adding and subtracting the streamline diffusion term; the last equality is an immediate consequence of
equation (5).

We now collect (9), (10), and (11) to 

from which we immediately deduce sH < s S s+ thanks to the definition of s~, SH, and the remark that

where we have used the definitions of ~:, ~, and AH.

4 Numerical Results

We consider a simple one-dimensional example [8]

du

dx +u
u(O)

with f given by

= f, 0<z<l,

= 0,

1-3x for 0 < x < 0.5
.f(x) = 2.5(x - 0.7) for 0.5 < x < 0.7

0 for 0.7 < x <_ 1.

The only output considered is the mean of u over the domain

fs = u(x) dx.

We use uniform meshes. The Neumann subproblems (6) and (7) are solved on a (decoupled) mesh of diameter
h = 1/1000. In Table 1, we first examine the convergence of Uh -- UH and Ch -- Cg in the H1(~2) semi-norm (denoted
] " I1) and L2(~) norm, respectively; we note that lUh -- UHI1 ---- O(H) and IIg’h -- ~bgllo = O(H2). Turning now to
the error estimators S~g, we have verified that they are bounds for any choice of H, and we observe, in Table 1, that
the bound gap converges at the expected rate, O(H3). In [8], for the same problem, only O(H2) was achieved for the
bound gap. We have also computed the bounds for several different choices of (~ in the range of admissible values, and
the bound gap appears to be relatively independent of this choice.
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H LI¢~ - Ch Ilo IU H -- UhlI A-H/Sh

0.100 0.0749 2.5512e-04 6.2698e-04
0.050 0.0373 6.2526e-05 7.5004e-05
0.025 0.0186 1.5475e-05 9.1719e-06
0.010 0.0074 2.4606e-06 5.6676e-07
0.005 0.0036 6.1339e-07 6.4093e-08

Table 1: Numerical results.
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